
Hiding Behind the Shoulders of Giants:
Abusing Crawlers for Indirect Web Attacks

Apostolis Zarras
Technical University of Munich

zarras@sec.in.tum.de

Federico Maggi
Trend Micro Inc.

federico maggi@trendmicro.com

Abstract—It could be argued that without search engines, the
web would have never grown to the size that it has today.
To achieve maximum coverage and provide relevant results,
search engines employ large armies of autonomous crawlers that
continuously scour the web, following links, indexing content, and
collecting features that are then used to calculate the ranking of
each page. In this paper, we describe how autonomous crawlers
can be abused by attackers to exploit vulnerabilities on third-
party websites while hiding the true origin of the attacks.
Moreover, we show how certain vulnerabilities on websites that
are currently deemed unimportant, can be abused in a way that
would allow an attacker to arbitrarily boost the rankings of
malicious websites in the search results of popular search engines.
Motivated by the potentials of these vulnerabilities, we propose a
series of preventive and defensive countermeasures that website
owners and search engines can adopt to minimize, or altogether
eliminate, the effects of crawler-abusing attacks.

I. INTRODUCTION

It is, at times, hard to imagine that search engines were

not always part of the Web. Before the prevalence of search

engines, users were finding content either by following links or

hearing about websites, or even attempting to guess the domain

of a website; for instance, a user searching for “California

wine” guessing that the californiawine.com is the most

appropriate website. Consequently, an abundance of publicly

available knowledge remained hidden from the vast majority of

the early Internet population who relied to the aforementioned

techniques to discover useful information.

This way of navigating the Web has changed dramatically

with the advent of search engines. While the primary search

engines had an index of few thousand web pages [19], their

modern versions count tens of billions of them [28]. Search

engines are trusted to provide relevant content to users, in

response to their search queries. Moreover, due to their unbi-

ased ranking algorithms, the results the users get are the ones

that best match their interests. Undoubtedly, this was a total

departure from previous website links, where the users could

not know whether a host-website is linking to a destination-

website because it has the most relevant content, or because

the destination-website is actually paying the host-website a

monthly fee for having its link listed.

Today, search engines are responsible for the majority of the

content-discovery. The tight coupling of search engines and

modern browsers in the form of dedicated input fields next

to the browser’s URL bar—or piggybacking on the URL bar

itself—is further evidence that users rely more and more on

search engines. To provide relevant content, search engines

employ large armies of automated website crawlers. These

crawlers are constantly navigating the web, following links,

indexing content, and gathering statistics for each discovered

page. The gathered data are combined to produce a rank for

each page, which is then used to provide ordered search results

when the users search for relevant terms.

The higher a website is listed on search results, the more

likely it is that a user would click on that link instead of

a competing one [23]. This has given rise to a wide range

of techniques used by websites to manipulate the findings of

crawlers such that the websites appear on a higher ranking in a

search engine’s results. These techniques are part of the search
engine optimization (SEO) toolbox and can range from benign

actions (e.g., refactoring a page’s HTML code to be easily

consumed by crawlers) to blackhat ones (e.g., purchasing of

backlinks from other websites or stuffing of each page with

multiple keywords) [17], [29].

In this paper, we investigate the extent to which attackers

can abuse the logic of search engine crawlers to perform var-

ious attacks. We show that an attacker can convince crawlers

to launch attacks against third-party websites by crafting the

appropriate links. For instance, an attacker who knows that a

remote website is vulnerable to a SQL injection, can construct

a malicious URL that exploits that vulnerability and have the

crawler of a search engine follow that link instead of following

it by herself. The attacker can then exfiltrate the results

of that attack through numerous ways (e.g., inspecting the

cached page of the vulnerable website on the search engine’s

website). Apart from totally shielding the attacker from a

post-mortem analysis of the attack by the operators of the

vulnerable website, such attacks create additional problems. If,

for instance, a web application firewall detects such an attack

and decides to block the traffic coming from the IP address of

the attacking host, it will essentially be blocking the crawler

of a large search engine, an action with negative effects for

the website’s visibility on the search results of that specific

search engine.

In addition, we show that vulnerable websites can be used

to boost the ranking of attacker-owned domains. This is

feasible through the careful construction of links that, when

followed by a crawler, will provide web pages with backlinks

355

2017 15th Annual Conference on Privacy, Security and Trust

978-1-5386-2487-6/17/$31.00 ©2017 IEEE
DOI 10.1109/PST.2017.00049

towards the attacker-owned or third-party domains. These

injected backlinks will positively affect the ranking of the

adversary’s website, which can in turn be used for scams

and drive-by download attacks. Overall, we examine the 2013

top ten security risks listed on the Open Web Application

Security Project (OWASP) website [20] and reveal which web

crawlers can be manipulated to perform attacks against those

vulnerabilities.

Finally, we propose a series of deterministic and learning-

based countermeasures for the detection of malicious outbound

links. For the former, we propose the notion of authorized
links (i.e., links whose legitimacy can be verified by a search

engine crawler) and show how they can be realized, in a

back-compatible way, using existing web technologies. For

the latter, we use anomaly-detection to establish a notion of

normality for the outbound links of any given website, which

can be used by the site operator to detect abnormal outbound

links.

In summary, we make the following main contributions:

• We provide a systematic overview of attacks due to the

abuse of search engine crawlers and study the conse-

quences of different attacks on search engines as well

as the affected third-party websites.

• We deploy vulnerable sites together with attacker-

controlled websites and measure the susceptibility of the

crawlers of various search engines and the degree to

which they unwillingly “collaborate” with an attacker.

• We propose pragmatic, deterministic, and design-based

countermeasures along with learning-based mitigations

and evaluate their efficiency.

II. BACKGROUND

In this section, we provide background information on web

indexing and website ranking as well as a quick reminder of

the power that modern web application vulnerabilities provide

to an attacker.

A. Web Indexing

Web indexing refers to various methods and algorithms for

indexing the contents of a website. Search engines extensively

use web indexing to harvest, categorize, and rank previously

unknown websites. In other words, search engine indexing col-

lects, parses, and stores data to facilitate information retrieval.

To retrieve the content of websites, search engines rely on

crawlers. A web crawler (or web spider) is a program that

browses the web in a methodical and automated manner. A

web crawler begins its task with a list of seed URLs to visit.

As it visits these URLs, it identifies all the hyperlinks in the

visited page and adds them to the list of URLs that remain to

be visited. Through this process, a crawler not only identifies

the subject and the quality of information on each page, but

also the pages to which a website links to.

The latter information is used by many ranking algorithms,

including Google’s PageRank [4]. PageRank estimates the

popularity of a web page by means of its linking. Every web

page has a rank that represents its estimated popularity. The

page’s rank is determined by the number and ranking of its

incoming links (called backlinks). This means that a web page

is highly ranked if it has backlinks with a high rank or a large

number of backlinks with a low rank. The rank R(p) of a

web page p is equal to the sum of the ranking R(b) of each

backlinking web page b divided by the total number of its

outlinks |O(b)|:

R(p) = c
∑

b∈B(p)

R(b)

|O(b)|

where c < 1 is a normalization factor, B(p) the set of back-

link web pages of page p, and O(b) the set of outlinks of a page

b (i.e., all the links on a web page which are not navigational

links). Another ranking algorithm is the Hyperlink-Induced
Topic Search (HITS) [14], which uses the link structure to

identify good web pages related to a specific topic. In contrast

to PageRank, the web graph is not rated as a whole entity,

but only a subgraph that contains web pages relevant to the

searched keywords is taken into consideration.

One can straightforwardly understand that websites with

a substantial number of backlinks—especially if they come

from highly ranked websites—will receive a better ranking in

a search engine’s results. As a consequence, users typically

visit the highest-ranked web pages and ignore the rest [23].

Unfortunately, this fact also attracts miscreants who try to

leverage these mechanisms to lure more victims to their

(malicious) websites.

B. Web Vulnerabilities and Exploits

The complexity of modern websites, along with the mixing-

and-matching of platforms and extensions, are some of the

root causes of web application vulnerabilities. The existence of

website vulnerabilities, such as cross-site scripting (XSS) [26],

SQL injection [3], cross-site request forgery (CSRF) [2], com-

mand injections [24], HTTP parameter pollution (HPP) [1],

and HTTP response splitting [13], are among the most pressing

security problems on the Internet today.

The attackers use these vulnerabilities to exploit websites.

Even vulnerabilities such as SQL injections and XSS, which

are well-known and have been studied for years, are still

frequently exploited and constitute a significant portion of

the vulnerabilities discovered each year [5]. To automate

the exploitation process, cyber-criminals use black-box web

vulnerability scanners. These tools crawl a website for known

security vulnerabilities and if they found one or more of them,

they generate specially-crafted input values to exploit them.

A vulnerability that has been exploited can have a negative

impact to the website itself and its visitors. For instance,

attackers that gain access to a website’s database can modify or

delete selected entries, or even exfiltrate sensitive data such as

user credentials [25]. Additionally, they can modify the content

of the website by including malicious scripts, redirecting the

traffic to malicious websites, or modifying advertisements to

generate revenue for themselves. Consequently, an exploited

website can completely destroy its reputation.

356

Figure 1. Overview of the attack scheme.

III. SECURITY PROBLEMS

In this section, we describe how an attacker can take

advantage of web crawlers against the search engine company

or to launch indirect attacks that cloak attacker’s true identity.

A. Attacker Model

Referring to Figure 1, we assume the existence of vulner-

abilities in a website (i.e., target.me) that is an attractive

target for an attacker. For instance, the website can contain

valuable information, such as user credentials, or possess a

high page rank. Additionally, we assume that an attacker

wants to benefit from these vulnerabilities. However, she does

not want to leave any traces of her actions. Moreover, she

may also know that specific actions can trigger alerts in the

website’s intrusion detection system (IDS), yet they might

appear benign if they come from popular web crawlers (e.g.,

due to whitelisting). Hence, she decides to take advantage of

search-engine crawlers to perform a series of indirect attacks.

The types of indirect attacks that an adversary uses depend

both on the targeted website as well as the extent to which the

attacker can manipulate search engine crawlers. We classify

the attacks in two different categories: (i) attacks that promote

a third-party website by abusing a vulnerable website and

(ii) attacks that directly affect the targeted website. The first

includes scenarios, such as blackhat SEO attempts, whereas

the second includes classic HTTP-based attacks against the

server-side software of target.me. In the following sec-

tions, we discuss the details of the aforementioned threats,

in which the adversary leverages a cooperating site (i.e.,

malice.me). This could be a site that is unknowingly

helping the intruder (e.g., a link aggregator or a blog that

allows posts) or created by the attacker herself. In both cases,

the requirements are that the adversary can post links with

arbitrary GET parameters.

B. Blackhat SEO Attacks.

To determine the reputation and popularity of a web page,

search engines commonly rely on the number and ranking of

the other web pages that link to it. In essence, the more web-

sites linking to a page p and the more popular these websites

are, the higher will be the rank that the page p will receive from

a search engine [4]. Although this is a reasonable way to define

page ranking, it can be also exploited by cybercriminals to

increase the rank of their web pages by increasing the number

of websites linking to them. Although SEO is acceptable by

search engines as a way to achieve a more accurate ranking of

the websites, blackhat SEO is considered as an “unfair” way of

Table I
OWASP 2013 TOP TEN CRITICAL WEB APPLICATION SECURITY RISKS.

A1 Injection
A2 Broken Authentication and Session Management
A3 Cross-Site Scripting (XSS)
A4 Insecure Direct Object References
A5 Security Misconfiguration
A6 Sensitive Data Exposure
A7 Missing Function Level Access Control
A8 Cross-Site Request Forgery (CSRF)
A9 Using Components with Known Vulnerabilities
A10 Unvalidated Redirects and Forwards

boosting web page ranking. As such, adversaries can leverage

code injection attacks against vulnerable websites and insert

backlinks that point to malevolent web pages.

C. Targeted Attacks Against a Website and its Visitors.

In contrast to attacks that abuse a targeted website to

increase the ranking of an attacker-controlled or third-party

website, there exist others that directly affect the targeted

website itself. The main intention behind these attacks is to

harm the vulnerable website; either with the manipulation of

its data or by stealing sensitive information. The compromised

website can then provide to attackers usable resources that can

be leveraged to send spam, attack other targets, or even infect

with malware the visitors of the website. Even vulnerabilities

such as Cross-Site Scripting (XSS), which are seem to be

not so harmful and are often underestimated, can act as the

launching point for attacks on visitors of the website.

As the motivation behind these attacks is mostly driven

by financial criteria, cybercriminals will become even more

resourceful in the media used for deploying their attacks.

Therefore, if they can effectively “maneuver” popular web

crawlers to perform these attacks instead of them and thus

concealing their true identity from the targeted website, we

believe that in the future will see more and more such types

of attacks. Therefore, a study on the feasibility of these attacks

is of great importance.

IV. SUSCEPTIBILITY ASSESSMENT

In this section, we describe how we assess the presence

of the aforementioned security problems in the real world.

More precisely, we show the feasibility of the attack schemes

by implementing them against the 2013 top ten critical web

application security risks listed by OWASP [20]. As such,

we first describe the methodology we use to perform the

attacks and then we evaluate the inclination of web crawlers to

launch them. We believe that we have constructed a realistic

scenario which aims to raise the awareness of web crawlers’

programmers to implement better filtering mechanisms.

A. Methodology and Measurement Infrastructure

A preliminary step for assessing a web crawler’s capacity

to blindly follow URLs, consists of attacking a vulnerable

website. Since it would be unethical to target a real site,

357

Table II
FEASIBILITY OF EACH ATTACK.

Bots A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

GoogleBot 83 53 91 103 45 41 28 43 0 44
MJ12Bot 14 5 24 18 13 27 0 8 0 6
PaperliBot 11 11 17 29 3 9 6 7 0 3
FacebookBot 9 6 22 20 10 5 7 6 0 8
BitlyBot 8 7 18 18 7 6 6 6 0 6
YahooBot 11 5 9 6 6 5 5 8 0 3
Yandex 4 4 10 13 10 6 0 1 0 6
BingBot 4 5 12 10 7 5 2 4 0 2
TwitterBot 7 5 10 11 2 3 4 2 0 3
Baidu 10 3 5 7 9 0 0 1 0 0
SocialRankIOBot 4 3 2 7 3 3 4 4 0 2
AppleBot 2 2 4 9 2 3 2 2 0 2
TweetmemeBot 2 0 7 6 1 2 4 1 0 3
LiveLapBot 3 0 3 1 1 0 1 0 0 1

we deployed our own website, which gave us the ability to

select the vulnerabilities we wanted to assess. Therefore, it

was possible to create a website prone to the OWASP risks

(see Table I) and thus allowing a comprehensive assessment.

Next, we developed the attacker-controlled website that

targeted all these vulnerabilities by generating the appropriate

attack-including links and mixing them with other benign

links. To camouflage it as a regular website, we updated its

content in daily basis. Finally, we advertised our attacking

website in all the major search engines using their appropriate

website-submission forms. We noticed that search engines

were very eager to index the newly available content. Indeed,

our web server logs revealed that the biggest search engines

commanded their crawlers to visit our websites on the same

day we submitted our links for indexing. In addition, to

incorporate crawling from more agents we also created social

media accounts and posted our attack-including URLs through

them. We also used URL shortening services to shorten the

URLs and then share them through our social media accounts.

It is worth mentioning that we deactivated the accounts we

used for our study once the experiment was over.

After crafting and publishing these URLs, we monitored and

analyzed our web servers (i.e., Apache) log files to discover

which web crawlers visited our websites and executed the

attacks we had embedded.

B. Findings

We ran our experiment for a period of 40 days. During this

time, we noticed 4844 visits to the attacker-controlled website.

We observed that the majority of crawlers visited our website

only few hours after we had submitted it to search engines.

In few cases it took up to 24 hours for the crawling process

to start after the original submission of the website. However,

it should not be assumed that all the crawlers’ visits resulted

in execution of some sort of attacks; some visits were just to

discover new pages.

On the other hand, the targeted website was not directly

advertised to search engines which resulted to less visits com-

pared to the attacker-controlled website. As a matter of fact,

the crawlers’ visits were heavily depended upon the embedded

links in attacker-controlled websites and links shared on social

media. We followed this path, because we wanted to observe

if web crawlers are willing to visit a website, which has only

been advertised through URLs that contain an attack against

this website. Overall, we observed 1456 visits.

Table II summarizes our findings, showing the successful

attacks that can be performed through different web crawlers.

Note that we omitted attacks that originate from real users and

those belonging to web crawlers that we could not trace back

to a specific service.

Coverage. We observed that all web crawlers performed at

least one attack, with some launching nearly all attacks. This

means that all the examined crawlers are prone on being

manipulated by attackers. This is an important finding, because

it proves that web crawlers can be manipulated by attackers

who want to hide their malicious activities. Another significant

finding is that the attacks posted in social media, were executed

almost immediately (or at least with some hours delay). This

means that an attacker can create fake profiles in social media

and leverage them to attack a third-party website. In this case,

the adversary does not even need to spent money for hosting

the attacker-controlled website. One may notice that the A9
attack is zero within all visited crawlers. The reason for that is

because we did not construct a URL to target this vulnerability,

however, based on the other outcomes a well-crafted URL can

exploit this vulnerability as well.

Speed and Frequency. We observed that some web crawlers

visited the vulnerable website in a periodic manner and

launched the attacks more frequently compared to others.

An attacker can benefit from this fact to make some attacks

more persistent. For instance, if the attacker knows the exact

vulnerability she wants to target, then she can advertise the co-

operating site to the most persistent web crawler to maximize

the efficiency of the attack. Also the time that the attack will be

launched by crawlers can be a approximately estimated. An

adversary can leverage this to know exactly when to target

a website; for instance, during night when the maintainer or

administrator of the website is probably sleeping.

V. DEFENSES

In the previous sections, we showed how an attacker can

abuse crawlers to conduct attacks against third-party servers as

well as to boost the rank of her sites. In this section, we discuss

how these attacks can be mitigated. We have purposefully

chosen to expand more on the attacks involving the addition

of backlinks since they are harder to detect using existing

technologies.

A. Stopping Targeted Attacks

For an attacker to successfully manipulate a crawler to

conduct server-side attacks, a remote web application must be

vulnerable to a server-side attack. One could argue that it is

the web application’s responsibility to protect itself and even

if a crawler has been used to conduct an attack, the search

engine behind it cannot be held responsible.

358

One solution that can be utilized by a web application to

protect itself is through the use of a Web Application Firewall
(WAF). Upon detecting an attack, the WAF will drop the re-

quest, and potentially blacklist the IP address of the offending

host. However, blocking the offending IP address can lead

to complications when an attacker is conducting her attacks

through crawlers which can cause the unwilling blacklisting

of the site from that specific search engine. A naive way of

handling this corner case is to consult the user-agent string

of the incoming HTTP request and block the requests coming

from bots. This, however, could be straightforwardly abused

by attackers in order to fully bypass the firewall. As such,

we reason that this strategy must be combined with reverse-

DNS lookups. A WAF that received an offending request by

a supposed search-engine bot can use a reverse-DNS lookup

in order to establish that the bot does in fact belong to

the claimed search engine. If it does, then the WAF should

avoid blacklisting its IP address and merely drop the request,

understanding that the bot is merely an unwilling actor in this

attack.

B. Stopping Blackhat SEO Attacks

We now focus on the problem of non-legitimate backlinks,

where an attacker abuses vulnerabilities to inject backlinks

to attacker-controlled sites. We discuss two possible solutions

that place most of the burden either on the website owner

or on the search engine. These solutions are compatible with

each other and thus can be both used at the same time to

improve the overall accuracy of a malicious-link detecting

system. Also, they are all backwards-compatible—in the sense

that sites and search engines that choose not to adopt them will

continue working seamlessly—and require no changes in the

web technologies.

� Deterministic Solutions: Authorized Links. A determin-

istic solution to this problem is to provide mechanisms to

website administrators that can be used to denote which links

are legitimate. If any links are found on a page that are not

explicitly approved by a page’s policy, the crawler can treat

them accordingly. To this end, we propose the concept of

authorized links, which are links augmented with authorization

information that a crawler can inspect and verify. We posit

that the use of message authentication codes (MACs), nonces,

and whitelisting are good mechanisms for realizing the notion

of authorized links as all have been successfully used in

the past to achieve integrity goals. Moreover, the nonces

and whitelisting method can be realized using the Content
Security Policy (CSP) mechanism, thus alleviating the need

for implementing yet another server-driven security policy

mechanism as well as training developers on how to properly

use it. In the following we discuss these solutions in detail.

MAC-based Solutions. Each link is augmented with a hash of

that link concatenated with a shared secret between the website

and the search engines. Since website administrators need to

interact with search engines to submit their websites’ URL for

crawling, it is straightforward to add an extra step where an

administrator, after verifying that she is indeed the owner of a

specific domain, shares a secret key with that search engine.

This key can be used in the future to verify the integrity of

the links found on her website.

The scheme works as follows: the owner of domain D
agrees on key K with a specific search engine. For every link L
toward remote domains, the owner of D, augments the anchor

tag with the result of H(K||L) where the function H is a

strong cryptographic hash function. Given an outbound link

to example.com and a key of “secret”, the HTML markup

for an anchor tag would be the following:

<a href="http://example.com"
data-mac="26b0c646651045370bf849a0170097c8">Click
here

where the data-mac attribute is the result of the MD5 hash

function on the string “secrethttp://example.com”.

All data-* attributes are invisible to normal users of a

website and are part of the HTML5 specifications. However, a

crawler belonging to a search engine that knows in advance the

key of this website can recompute a link’s MAC and disregard

the link, if the computed MAC does not match the MAC

available on the website.

Even though the process of creating MACs for every

outgoing link is likely to be arduous, it does not need to

be performed manually. Unless the owner of a website is

writing HTML by hand, “What You See Is What You Get”

(WYSIWYG) editors that are available for all modern content

management systems can fully automate this process. For in-

stance, when the user is writing a new blog post in WordPress

and clicks on the button that enters a new link, the editor

can automatically fetch the key from the website’s database,

compute the proper MAC, and append it to the generated

markup. Even for developers who decide to write HTML by

hand, a script that receives as input the secret key can parse

the HTML file, compute the appropriate MACs and rewrite

the HTML code to support the notion of authorized links.

Nonce and Whitelisting. In a nonce-base solution, each link

toward a remote domain is augmented with a non-predictable

identifier that is different for every page load. The Content

Security Policy (CSP) 1.1 draft allows developers to include

inline JavaScript in their web pages (forbidden in the original

CSP specification) as long as each inline script specifies the

correct nonce [27]. The correct nonce is communicated to the

browser through the CSP header. For example, a browser that

receives the following HTTP response:

HTTP/1.1 OK
Content-Security-Policy: script-src self ‘nonce-1q2w3e4r’;
[...]

//Legitimate script
<script nonce="1q2w3e4r">[...]</script>

//Malicious injected script
<script>[...]</script>

will allow the first inline script to execute but will stop the

second one which is not carrying the proper token. As such,

359

these nonces essentially allow capability-based access control.

As long as a script has the appropriate nonce (as specified

in the CSP header), the browser will allow it to execute. The

same functionality can be extended to protect links. That is,

the CSP header can denote an ahref-src attribute, which

will specify a nonce for the legitimate links. Assuming that the

nonce is sufficiently random and changes on every page load,

the attacker who is injecting backlinks will have no knowledge

of the nonce that will be given by the victim server to the

crawler. As with the MAC-based solution, both nonces can be

implemented by WYSIWYG editors and content management

systems, which will automatically emit the appropriate nonces

without the user even being aware of their existence.

The benefit of this solution over the MAC-based approach

is that website owners do not need to exchange any long-

term secret keys with search engines. At the same time, since

these nonces have to change upon each page load, the server

should be careful when caching pages at the server-side. A

caching of nonces can, in principle at least, allow an attacker

to inspect a nonce and then, assuming that the nonce is reused,

inject nonce-including backlinks on the vulnerable websites.

Fortunately, several server-side frameworks allow the caching

of fragments of a web page [8] (as opposed to caching an entire

page) and thus servers do not need to forgo the performance

benefits of cached web pages.

Hybrid Solution. An alternative solution that combines the

benefits of no-secret exchange with search engines, as well as

worry-free caching, are whitelists of allowed outbound links.

As in CSP, a website can send to the client a list of authorized

remote domains through its CSP headers. As long as each

outbound link belongs to a domain that is part of the header-

specified domains, the crawler can treat it as an authorized list.

Depending on the nature of each website, the whitelist can be

a global one for the entire domain, or it can be specified per

subdomain or per path. In all cases, the WYSIWYG editors

should update this list as new URLs are added to each page.

Server-side versus Client-side Links. All aforementioned

mechanisms require that the web server is responsible for all

the links that arrive at a user’s browser. As such, if a significant

fraction of links are dynamically created at the client side,

our deterministic server-side approaches will not be able to

account for them. However, we found out that the vast majority

of links are server-created links, with only 283 out of 10,000

cases of dynamic, client-side-generated links. To quantify the

dynamic creation of links at the client side 10,000 sites, we

crawled 10,000 websites from alexa.com and filtered-out

all the links that led to an advertisement, as well as same-site,

navigation links.

� Learning-based Mitigation. The problem of automatically

distinguishing non-legitimate from legitimate data in web

applications has received ample attention in the anomaly

detection literature. At the price of some false alerts, anomaly

detection methods fill the gap left by misuse-based solutions

(e.g., blacklists, classic signature-based WAFs). Given the state

of the art, and the possibility of combining anomaly- and

misuse-based solutions on a modern web application, we can

reasonably assume that the HTTP requests toward large and

popular websites are already screened to mitigate suspicious

payloads.

Threat Model. A conservative threat model must at least

assume that non-legitimate outbound links have somehow

“slipped through the cracks” and are now dangerously dis-

played on a page, waiting for the crawler to follow them. This

can happen, for instance, on websites that allow anyone to

post arbitrary links (e.g., comments on blog posts, directories,

and bookmarks). In these cases, the website operator simply

does not want to invest resources to scrutinize every posted

link, especially a posteriori. For example, Maggi et al. [18]

showed that once attackers succeed in bypassing the first

line of defense and creating malicious shortened aliases, the

operators never check such aliases a second time. Another

example is that an attacker could have bypassed any security

measure along the way. There may be several reasons for

this, such as the attacker can obfuscate the backlinks using

redirections or adopt other sophisticated techniques.

The bottom line is that there exist ways for an attacker to

bypass the first line of defense without the operator noticing

it. Unfortunately, once the first line of defense is bypassed,

the website operator misses the chance of accurately detecting

a malicious link, because the contextual information (e.g.,

source IP, request headers) is not retained forever.

In all these cases it is be beneficial to perform an a
posteriori analysis on existing outbound links to differentiate

the legitimate from the non-legitimate backlinks, based exclu-

sively on the available information. In a conservative approach,

such information is simply the link itself, thus lacking any

provenance meta-data. The threat posed by search engine bots

presented in this work is one, relevant case. However, we

believe that having such a countermeasure would be very

useful for forensics purposes and other investigation tasks

(e.g., periodic housekeeping of free blogging platforms).

Modeling Legitimate Links. Given an arbitrary web page,

target.me/page.php, our goal is to detect outbound

links pointing to a website outside the control of the web

page owner. Thus, we focus on links that have paid-level

domains (PLD) different from target.me. Of course, we

do not consider hyperlinks across distinct domains from

the same organization as outbound links, because these can

be easily whitelisted. For instance, links from youtube.
com to google.com are certainly legitimate. Moreover,

we only consider links that can be used to encode an ex-

ploit or, in other words, those that contain a query string

(e.g., boostme.com/path/p.php?par=var), including

dynamically-generated links (e.g., via JavaScript). In general

terms, we are interested in the URL contained in those GET or

POST requests originating when the search engine bot follows

a link referred by the source page on target.me.

We analyze all these backlinks that the website operator

does not know how to handle; these that have already gone

360

through whatever countermeasures and whitelisting filters em-

ployed up to now. The challenges we face are: (i) there is

little contextual information attached on a standalone link and

(ii) there are multiple classes of links under the same domain

(e.g., long links with many parameters, short links with few

but long parameters, other links with just integers, floats or

tokens as parameters). The features proposed in the related

literature (e.g., [15]) for detecting anomalous HTTP requests

are inapplicable in this context. First, they are designed to

detect anomalous requests directed toward a web application

as opposed to unexpected outbound links. Second, state-of-the-

art methods assume that there is quite a regular structure in the

analyzed URLs, since they all encode a request to a single web

application or to a small set of web applications. In this setting,

anomalous requests can be detected quite easily by finding out-

of-sequence parameters, long parameters, special characters in

the payload, etc. However, when this assumption is removed,

the problem becomes harder. In principle, it is possible to

apply state-of-the-art web application anomaly detection tech-

niques by creating one model per outbound domain, striving

to learn the regularities of the requests directed toward each

external site. However, scarcity and uneven distribution of

data may limit the applicability of such an approach. Last,

these approaches work well when used in conjunction with

other models (e.g., by creating correlated request-response

models [15], timing features, previous knowledge on the

request handler, etc). However, this information is not available

on the referring pages hosted on target.me.

Characterizing Features. For the referring site that wants to

perform checks on the outbound links, we propose a set

of lightweight features and a simple but effective learning

technique that makes no assumptions about the non-legitimate

links. The only requirement is a set of legitimate links.

We do not aim to provide perfect recognition, nor to create

an alternative for detecting malicious payloads, as we are well

aware that having only the link’s string representation gives us

a very limited view. Perfect protection can be obtained with the

deterministic solution described earlier, at the price of design

changes. When this is not feasible, the solution described in

this section gives reasonable protection at zero cost, which is

already a benefit when compared to the baseline (i.e., unpro-

tected site). Moreover, the website operator may combine our

solution with other site-specific filters that leverage domain

knowledge to mitigate errors.

Specifically, for each link, we represent the string after the

first slash with the following feature vector:

• l (integer): number of symbols, including any character

class;

• d (integer): the depth of the path, that is the number of

“/”;

• s (integer): number of special characters;

• u and U (integer): number of lower and uppercase

alphabetical characters;

• p (float): mean length of parameters’ names, counting all

symbols prior “=”;

• v (float): mean length of parameters’ values, counting all

symbols after “=”;

• n (float): number of parameters.

In addition to these features, we run a pilot experiment

including the frequency of each symbol in [a-zA-Z0-9]
and special characters as features. However, we obtained

unsatisfactory results and significant speed penalties due to

the increased dimensionality (above 104 features).

Training and Detection. We use the aforementioned features to

fit a model that can be used to decide whether a new outbound

link is non-legitimate. Our model can be trained at various

aggregation levels, depending on the working environment.

For instance, a site with regular links throughout all the pages

can train one model, whereas larger websites can train one

model per site section. Given the problem setting, three broad

modeling approaches can be applied.

In the optimal case when the website operator has knowl-

edge about the characteristics of the non-legitimate links she

wants to detect, a supervised learning approach can be used.

Using terminology from the machine learning field, this is

essentially a binary classification problem. This yields the best

recall and precision, although the assumptions underneath this

approach are not always realistic. Indeed, if one of the two

classes of links is not well represented during training or if it

changes dramatically during operation, the quality of detection

may decrease over time.

Another approach consists in mapping the problem to a one-

class classification task, or semi-supervised learning. Essen-

tially, we ignore non-legitimate links and train the classifier

exclusively on legitimate links. Although this approach has a

recall close to one hundred percent, it may suffer from many

false positives.

A third, and more realistic, approach consists of not map-

ping this problem to a classification task. Instead, we show

that a simple outlier detection technique performs very well,

without requiring any assumption on how the feature values

are distributed. Additionally, we do not require any knowledge

about the outliers.

Our technique is inspired by the histogram-based outlier

score (HBOS) [10]. We split the list of legitimate links

available for training in two batches. On the first batch, for

each feature, we calculate the relative-frequency histogram

using a fixed number of equally-sized bins on the training

data. The number of bins, as well as other parameters, can be

easily tuned on a per-site basis. Interestingly, this method is

suitable for online learning, as the frequencies can be updated

without batch re-training as new samples come in. As result,

we obtain M = 7 histograms, where M is the size of the

feature vector.

On the second batch, we calculate the following score:

HBOS(v) =
M∑

i=0

log
1

freqi(vi)
(1)

where v is an M -sized vector holding the feature values for

each link in the batch and freqi(vi) is the frequency of the

361

i-th component of the vector v, which is actually the height

of the corresponding bin in the i-th histogram. If a value has

zero frequency, we assign it an arbitrarily low value to allow

the calculation of the fraction and logarithm. Any low value

close to zero yields a very high HBOS component, to account

for the never-seen-before value.

We now calculate the mean and standard deviation of the

HBOS, which essentially expresses the allowed values of

outlier score of legitimate links. Since the legitimate links have

a lower variability than non-legitimate links (HBOS values are

instead more distant from the mean), we can create a decision

function for determining whether a new link is legitimate,

given its feature vector v′:

Legitimate(v′) = HBOS(v′) ≤ α · μ+ β · σ (2)

This is based on Chebyshev’s inequality, where the α and

β parameters can be tuned on a per-site basis. Note that

this decision boundary works without assuming any specific

underlying distribution of features. Overall, this lightweight

technique allows flexible tuning, explanation of the reason for

considering a link as an outlier, and excellent results. Indeed,

the website owner can examine each alert and see which

feature(s) contributed most to a high HBOS(·) score (e.g., link

with unexpected number of parameters, or too many special

characters).

Feasibility Evaluation. We implemented a proof-of-concept of

our approach in about 600 lines of Python code (including

code required for automating the experiments), leveraging the

SciPy [12] framework for statistical computation. Our proto-

type parses the path and query string of each outbound link and

calculates the aforementioned features. Next, it performs the

training and estimation of the μ and σ for a given site. These

values are then used for deciding if new links are legitimate

or not.

Using the JavaScript-supporting, headless PhantomJS [11]

browser, we collected 795,274 outbound URLs from the top

5,000 Alexa websites. We excluded websites with no public

pages, which required registration and login (e.g., Facebook,

Twitter, LinkedIn), as they would not be targeted by public

search engine bots, and sites with only a handful of outbound

links. Our crawling script, based on CasperJS [21], started

from the initial seed, enqueued inbound links to continue

the crawling process on each site, and saved outbound links.

As a source of non-legitimate outbound links, we used the

dataset from our measurement setup described in Section IV.

On average, we collected 244.1 (± 319.97) outbound links

per site, with peaks up to 2,268 links. Given this skewed

distribution, we focused our experiments on the top 400

sites having at least 200 outbound links each. The following

experiments were repeated ten times for each data point on

a randomized and shuffled train-test split (i.e., 10–fold cross

validation).

Feature extraction is extremely fast, even in our proof-of-

concept prototype written with an interpreted language running

on a laptop. On average, on our entire dataset, 0.7513ms (±

●

●

● ●

●

●

●

●

Generic Per−site tuning

0.0

0.3

0.6

0.9

FPR TPR Pecision F1−score FPR TPR Pecision F1−score

R
at

io
 v

al
ue

Figure 2. Overall final detection quality in terms of F1 score, precision, TPR
and FPR (before and after per-site tuning).

0.3375ms) are required to extract the features from one link,

using a few megabytes of main memory.

The default parameters in Equation 2, α = 1.0 and β = 2.0,

the arbitrarily low frequency to be assigned to novel feature

values in Equation 1, 0.0001, and the number of bins of

the histogram, result in a very diverse detection performance,

ranging from sites with very high TPR to sites with too many

FPRs. This led us to consider that each site could optimize the

detection by choosing the combination of parameters that max-

imizes the precision, or the F1 score (high F1 score means both

high precision and high recall, as F1 = 2· precision·recall
precision+recall). We

found out that each site has indeed a distinct combination of

parameters that works better than others. Globally, with these

per-site tuned models, we obtain a better detection as shown

in Figure 2. In addition to optimization, each site owner can

pre-group outbound URLs based on domain knowledge (i.e.,

URLs going to site X or Y), so that group-specific models can

be fitted.

From Figure 2, the vast majority of websites can detect

non-legitimate outbound links with more than 90 percent of

TPR and less than 6 percent of FPR. Depending on whether

handling a false positive costs more than missing a true alert,

the website owner can easily tune our model to minimize the

respective costs. In our experiments, we tuned the models to

maximize both precision and recall, and thus to obtain the

highest possible F1 score.

Among the false positives we found (i) inbound URLs with

a different domain but still affiliated to the same organization,

(ii) well known banner circuits, or (iii) social buttons, which

can be easily filtered out with a simple whitelisting.

VI. DISCUSSION

Web crawlers manipulation is a new field of study in the

context of web crawlers. As we showed in this study web

crawlers can be exploited to launch attacks against vulnerable

websites. However, as with any other study there exist some

limitations. In the following we expose these restraints and

discuss how we can potentially address them.

Attacker Model. For our attacker model, we considered two

important issues that were caused by the behavior of crawlers:

362

blackhat SEO and targeted attacks. Current crawlers, however,

are expected to deal with increasingly complex web applica-

tions that require both JavaScript support as well as increased

computing resources. Therefore, we envision other attacks,

where the CPU cycles of web crawlers could be abused to

run complex client-side software that performs malicious tasks

such as crypto-currency mining and password bruteforcing.

Measurement. Our measurement focused on web crawlers

as they are the most important category of “link followers”.

However, the security issues that we highlighted in this work

can in principle affect any environment where an automated

browser follows a link. Expanding our analysis further can

only reveal more instances of the very same, concerning

problem.

Deterministic Defenses. We proposed simple yet effective

design principles that could prevent abusing web crawlers

entirely. The assumption is that the website owner or web

application developer can decide which links are safe to be

crawled and which ones are not. Our solution is perfectly com-

patible with the current Web and works for both statically and

dynamically generated links. However, it is less applicable to

websites that host massive amounts of arbitrary user-generated

content. In these cases, we had to resort to a non-deterministic

mitigation approach, which is intrinsically imperfect.

Learning-based Defenses. Our learning-based mitigation ap-

proach assumes that there is a limited number of “classes” of

legitimate outbound links. On websites with many different

“classes” of links, our technique can yield errors. Although

we showed that we could ignore this problem, we believe that

our technique may yield better results if applied with pre-

processing pipelines, which group outbound links according

to their provenance (e.g., per user, per page, or section of the

website). This would ensure much more uniform histograms

during training and thus increased detection capabilities and

fewer errors.

VII. FUTURE WORK

This study is to the best of our knowledge the first attempt to

investigate the manipulation of web crawlers by attackers. Yet,

future studies could shed more light to this potential threat. In

this section we present possible research paths and highlight

topics that worth to be further investigated.

Exploring Other Attacks. A future research direction will

be to extend the attack models beyond the ones described in

this paper. The first step is a careful systematization and fin-

gerprinting of the capabilities of the crawlers to understand to

which extent they can execute arbitrary client-side code. Then,

possibly in cooperation with the search-engine operators, the

second step consists in testing a list of increasingly complex

attacks to evaluate their feasibility.

Exploring Other Vectors. As a continuation of the previous

point, exploring other web services that can be used as

a trampoline for our attacks is another interesting research

direction. The challenge here is that the interaction with such

web services could be hard to automate in a generic way.

Interesting web services worth exploring include, for instance,

link checkers or chat bots that process posted links and security

products such as automated scanners used to analyze a website

to categorize its content (e.g., Web of Trust).

Web Frameworks. Automatic cross-site request forgery pro-

tection has now landed in commercial and open-source (CSRF)

web application frameworks (e.g., Flask, Django). All the

developer has to do is use them, and forms are automati-

cally protected against CSRF. Similarly, we believe that our

proposed deterministic solutions can be implemented and

included in web development libraries to ensure that all on-

premise links are authenticated out of the box.

Supervised Learning. An interesting research direction con-

sists in exploring the application of supervised learning tech-

niques in order to incorporate pre-existing domain knowledge

in the models that we propose. This may improve the recall

of the non-legitimate links, while keeping a high precision.

However, given the variety of non-legitimate outbound links

that an attacker can craft, applying these techniques requires

an ample set of samples as well as a robust set of features to

model them.

VIII. RELATED WORK

Web vulnerabilities [20] are a longstanding problem in

the modern digital world. Previously, researchers focused on

every aspect of web vulnerabilities, including design-based

solutions [22] to minimize the chances of errors in the devel-

opment phase, code-analysis approaches that try to find [26]

and remove [9] application bugs, black box approaches to

detect vulnerabilities in embedded web interfaces [6], [7],

and runtime defenses that strive to detect and block their

exploitation. Although technically simple to understand and

implement, the abuse of web crawlers as an indirect “ex-

ploiter” of web vulnerabilities is a serious threat that creates

a trade-off between “protection” vs. “popularity” in modern

websites.

The attacks that we present in this work can be categorized

as abuses of public web services for malicious purposes.

A recent and interesting work in this direction is [16],

which presents a composition-based attack put together by

the authors by leveraging benign web services (e.g., Google

Docs, Facebook, URL shorteners). The approach presents a

series of low-level HTTP primitives that can be created by

adding certain URLs, for example, in a Google spreadsheet

or Facebook status update, and waiting for the service to

crawl such URLs. The net result is that an attacker can send

arbitrary HTTP requests while remaining anonymous, well

hidden behind the many levels of indirection created through

the combination of such services. Interestingly, this method

could be leveraged in our attacks to further increase their

power.

SURF [17] is a recent work on the detection of web

search engine poisoning. The authors study search redirection

graphs, obtained with an instrumented browser, and extract

363

robust features that indicate rogue redirections typical of

poisoning campaigns. Such features include, for instance, the

total redirection hops, the number of cross-site redirections,

the presence of page-rendering errors. A system like SURF

can be effectively adopted on a global scale by search engine

operators to find and hide rogue results. In fact, in our

work we focus more on detecting the origin of the indirect

attacks described in Section III-C. Regarding the search engine

poisoning attacks described in Section III-B, we focus specif-

ically on those that are made possible thanks to the presence

of vulnerabilities. Moreover, SURF tackles the problem of

detecting existing campaigns in general, whereas we analyze

the causes of the problem under the specific condition of a

vulnerable website that offers the attacker a low-hanging fruit

to create such campaigns. In principle, our results could be

applied to characterize and detect vulnerability-enabled search

engine poisoning campaigns right at the origin.

IX. CONCLUSION

In this paper, we explored a new category of attacks, which

rely on the fact that search engine bots, or third-party web

services in general, trust and follow links that are presented to

them. The challenge here is that there is a trade-off between

the primary goal of a bot (i.e., explore every corner of the

web) and the risk of following a malicious link. The security

problem that arises is amplified by the increased computational

power demanded by modern websites, which require complex

crawling capabilities. We discovered that the most popular

crawlers (i.e., GoogleBot, BingBot, YahooBot) are blindly

following links that could potentially end up exploiting a vul-

nerability against the target host. This empowers the attacker

with the possibility of hiding her true location when launching

an attack. Moreover, the existence of this attack venue creates

a delicate and complex issue of responsibility: which party,

between website owner and crawler operator, is liable in case

a malicious outbound link disrupts a web service? Finally,

we proposed countermeasures that can be adopted gradually

and independently by each involved party, which, depending

on their deployment, can mitigate or altogether eliminate this

problem.

ACKNOWLEDGEMENT

The research was supported by the German Federal Ministry

of Education and Research under grant 16KIS0327 (IUNO).

REFERENCES

[1] M. Balduzzi, C. T. Gimenez, D. Balzarotti, and E. Kirda. Automated
Discovery of Parameter Pollution Vulnerabilities in Web Applications.
In ISOC Network and Distributed System Security Symposium (NDSS),
2011.

[2] A. Barth, C. Jackson, and J. C. Mitchell. Robust Defenses for Cross-
Site Request Forgery. In Conference on Computer and Communications
Security (CCS), 2008.

[3] S. W. Boyd and A. D. Keromytis. SQLrand: Preventing SQL Injection
Attacks. In Applied Cryptography and Network Security, 2004.

[4] S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web
Search Engine. Computer Networks and ISDN Systems, 1998.

[5] S. Christey and R. A. Martin. Vulnerability Type Distributions in CVE.
Mitre report, 2007.

[6] A. Costin, A. Zarras, and A. Francillon. Automated Dynamic Firmware
Analysis at Scale: A Case Study on Embedded Web Interfaces. In
ACM Asia Conference on Computer and Communications Security
(ASIACCS), 2016.

[7] A. Costin, A. Zarras, and A. Francillon. Towards Automated Classifi-
cation of Firmware Images and Identification of Embedded Devices.
In International Conference on ICT Systems Security and Privacy
Protection (IFIP SEC), 2017.

[8] Django. Django’s Cache Framework. https://docs.djangoproject.com/en/
dev/topics/cache/#template-fragment-caching, Mar 2015.

[9] A. Doupé, W. Cui, M. H. Jakubowski, M. Peinado, C. Kruegel, and
G. Vigna. deDacota: Toward Preventing Server-Side XSS via Automatic
Code and Data Separation. In Conference on Computer and Communi-
cations Security (CCS), 2013.

[10] M. Goldstein and A. Dengel. Histogram-Based Outlier Score (HBOS):
A Fast Unsupervised Anomaly Detection Algorithm. In German
Conference on Artificial Intelligence, 2012.

[11] A. Hidayat. PhantomJS. http://www.phantomjs.org, Mar 2015.

[12] E. Jones, T. Oliphant, and P. Peterson. SciPy: Open Source Scientific
Tools for Python. http://www.scipy.org/, 2001.

[13] A. Klein. Divide and Conquer: HTTP Response Splitting, Web Cache
Poisoning Attacks and Related Topics. Sanctum whitepaper, 2004.

[14] J. M. Kleinberg. Authoritative Sources in a Hyperlinked Environment.
Journal of the ACM (JACM), 1999.

[15] C. Kruegel, G. Vigna, and W. Robertson. A Multi-Model Approach to
the Detection of Web-Based Attacks. Computer Network, 2005.

[16] F. Lu, J. Zhang, and S. Savage. When Good Services Go Wild:
Reassembling Web Services for Unintended Purposes. In USENIX
Summit on Hot Topics in Security (HotSec), 2012.

[17] L. Lu, R. Perdisci, and W. Lee. SURF: Detecting and Measuring Search
Poisoning. In Conference on Computer and Communications Security
(CCS), 2011.

[18] F. Maggi, A. Frossi, S. Zanero, G. Stringhini, B. Stone-Gross,
C. Kruegel, and G. Vigna. Two Years of Short URLs Internet
Measurement: Security Threats and Countermeasures. In International
Conference on World Wide Web, 2013.

[19] O. A. McBryan. GENVL and WWWW: Tools for Taming the Web. In
International Conference on World Wide Web, 1994.

[20] Open Web Application Security Project. Top Ten. https://www.owasp.
org/index.php/Top 10 2013-Top 10, 2013.

[21] N. Perriault. CasperJS, a Navigation Scripting and Testing Utility for
PhantomJS and SlimerJS. http://casperjs.org, Mar 2015.

[22] W. Robertson and G. Vigna. Static Enforcement of Web Application
Integrity Through Strong Typing. In USENIX Security Symposium, 2009.

[23] C. Silverstein, H. Marais, M. Henzinger, and M. Moricz. Analysis of a
Very Large Web Search Engine Query Log. ACM SIGIR Forum, 1999.

[24] Z. Su and G. Wassermann. The Essence of Command Injection Attacks
in Web Applications. In Symposium on Principles of Programming
Languages (POPL), 2006.

[25] The Register. Hacker Crew Nicks ‘1.2 Billion Passwords’ – But WHERE
Did They All Come From? http://www.theregister.co.uk/2014/08/05/
russians amass 1 2bn stolen passwords/, Aug 2014.

[26] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna.
Cross Site Scripting Prevention With Dynamic Data Tainting and Static
Analysis. In ISOC Network and Distributed System Security Symposium
(NDSS), 2007.

[27] W3C. Content Security Policy 1.1. http://www.w3.org/TR/2014/
WD-CSP11-20140211/, Feb 2014.

[28] WorldWideWebSize. The Size of the World Wide Web (The Internet).
http://www.worldwidewebsize.com/, Apr 2015.

[29] A. Zarras, A. Papadogiannakis, S. Ioannidis, and T. Holz. Revealing
the Relationship Network Behind Link Spam. In Annual Conference on
Privacy, Security and Trust (PST), 2015.

364

